\(\int (d \sec (e+f x))^{7/2} (a+b \tan (e+f x)) \, dx\) [578]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 121 \[ \int (d \sec (e+f x))^{7/2} (a+b \tan (e+f x)) \, dx=-\frac {6 a d^4 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {2 b (d \sec (e+f x))^{7/2}}{7 f}+\frac {6 a d^3 \sqrt {d \sec (e+f x)} \sin (e+f x)}{5 f}+\frac {2 a d (d \sec (e+f x))^{5/2} \sin (e+f x)}{5 f} \]

[Out]

2/7*b*(d*sec(f*x+e))^(7/2)/f+2/5*a*d*(d*sec(f*x+e))^(5/2)*sin(f*x+e)/f-6/5*a*d^4*(cos(1/2*f*x+1/2*e)^2)^(1/2)/
cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))/f/cos(f*x+e)^(1/2)/(d*sec(f*x+e))^(1/2)+6/5*a*d^3*sin
(f*x+e)*(d*sec(f*x+e))^(1/2)/f

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3567, 3853, 3856, 2719} \[ \int (d \sec (e+f x))^{7/2} (a+b \tan (e+f x)) \, dx=-\frac {6 a d^4 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {6 a d^3 \sin (e+f x) \sqrt {d \sec (e+f x)}}{5 f}+\frac {2 a d \sin (e+f x) (d \sec (e+f x))^{5/2}}{5 f}+\frac {2 b (d \sec (e+f x))^{7/2}}{7 f} \]

[In]

Int[(d*Sec[e + f*x])^(7/2)*(a + b*Tan[e + f*x]),x]

[Out]

(-6*a*d^4*EllipticE[(e + f*x)/2, 2])/(5*f*Sqrt[Cos[e + f*x]]*Sqrt[d*Sec[e + f*x]]) + (2*b*(d*Sec[e + f*x])^(7/
2))/(7*f) + (6*a*d^3*Sqrt[d*Sec[e + f*x]]*Sin[e + f*x])/(5*f) + (2*a*d*(d*Sec[e + f*x])^(5/2)*Sin[e + f*x])/(5
*f)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3567

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((d*Sec[
e + f*x])^m/(f*m)), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b (d \sec (e+f x))^{7/2}}{7 f}+a \int (d \sec (e+f x))^{7/2} \, dx \\ & = \frac {2 b (d \sec (e+f x))^{7/2}}{7 f}+\frac {2 a d (d \sec (e+f x))^{5/2} \sin (e+f x)}{5 f}+\frac {1}{5} \left (3 a d^2\right ) \int (d \sec (e+f x))^{3/2} \, dx \\ & = \frac {2 b (d \sec (e+f x))^{7/2}}{7 f}+\frac {6 a d^3 \sqrt {d \sec (e+f x)} \sin (e+f x)}{5 f}+\frac {2 a d (d \sec (e+f x))^{5/2} \sin (e+f x)}{5 f}-\frac {1}{5} \left (3 a d^4\right ) \int \frac {1}{\sqrt {d \sec (e+f x)}} \, dx \\ & = \frac {2 b (d \sec (e+f x))^{7/2}}{7 f}+\frac {6 a d^3 \sqrt {d \sec (e+f x)} \sin (e+f x)}{5 f}+\frac {2 a d (d \sec (e+f x))^{5/2} \sin (e+f x)}{5 f}-\frac {\left (3 a d^4\right ) \int \sqrt {\cos (e+f x)} \, dx}{5 \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}} \\ & = -\frac {6 a d^4 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}+\frac {2 b (d \sec (e+f x))^{7/2}}{7 f}+\frac {6 a d^3 \sqrt {d \sec (e+f x)} \sin (e+f x)}{5 f}+\frac {2 a d (d \sec (e+f x))^{5/2} \sin (e+f x)}{5 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.38 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.57 \[ \int (d \sec (e+f x))^{7/2} (a+b \tan (e+f x)) \, dx=\frac {(d \sec (e+f x))^{7/2} \left (40 b-168 a \cos ^{\frac {7}{2}}(e+f x) E\left (\left .\frac {1}{2} (e+f x)\right |2\right )+70 a \sin (2 (e+f x))+21 a \sin (4 (e+f x))\right )}{140 f} \]

[In]

Integrate[(d*Sec[e + f*x])^(7/2)*(a + b*Tan[e + f*x]),x]

[Out]

((d*Sec[e + f*x])^(7/2)*(40*b - 168*a*Cos[e + f*x]^(7/2)*EllipticE[(e + f*x)/2, 2] + 70*a*Sin[2*(e + f*x)] + 2
1*a*Sin[4*(e + f*x)]))/(140*f)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 26.10 (sec) , antiderivative size = 436, normalized size of antiderivative = 3.60

method result size
default \(-\frac {2 a \sqrt {d \sec \left (f x +e \right )}\, d^{3} \left (3 i E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (\cos ^{2}\left (f x +e \right )\right )-3 i F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (\cos ^{2}\left (f x +e \right )\right )+6 i \cos \left (f x +e \right ) E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-6 i \cos \left (f x +e \right ) F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}+3 i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-3 i \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}-3 \sin \left (f x +e \right )-\tan \left (f x +e \right )-\sec \left (f x +e \right ) \tan \left (f x +e \right )\right )}{5 f \left (\cos \left (f x +e \right )+1\right )}+\frac {2 b \left (d \sec \left (f x +e \right )\right )^{\frac {7}{2}}}{7 f}\) \(436\)
parts \(-\frac {2 a \sqrt {d \sec \left (f x +e \right )}\, d^{3} \left (3 i E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (\cos ^{2}\left (f x +e \right )\right )-3 i F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (\cos ^{2}\left (f x +e \right )\right )+6 i \cos \left (f x +e \right ) E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-6 i \cos \left (f x +e \right ) F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}+3 i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}-3 i \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}-3 \sin \left (f x +e \right )-\tan \left (f x +e \right )-\sec \left (f x +e \right ) \tan \left (f x +e \right )\right )}{5 f \left (\cos \left (f x +e \right )+1\right )}+\frac {2 b \left (d \sec \left (f x +e \right )\right )^{\frac {7}{2}}}{7 f}\) \(436\)

[In]

int((d*sec(f*x+e))^(7/2)*(a+b*tan(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

-2/5*a/f*(d*sec(f*x+e))^(1/2)*d^3/(cos(f*x+e)+1)*(3*I*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(cos(f*x+e)+1)
)^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*cos(f*x+e)^2-3*I*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(cos(f*x+
e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*cos(f*x+e)^2+6*I*cos(f*x+e)*EllipticE(I*(csc(f*x+e)-cot(f*x+e))
,I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)-6*I*cos(f*x+e)*EllipticF(I*(csc(f*x+e)-cot(f*x+
e)),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)+3*I*(1/(cos(f*x+e)+1))^(1/2)*EllipticE(I*(cs
c(f*x+e)-cot(f*x+e)),I)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)-3*I*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(c
sc(f*x+e)-cot(f*x+e)),I)*(1/(cos(f*x+e)+1))^(1/2)-3*sin(f*x+e)-tan(f*x+e)-sec(f*x+e)*tan(f*x+e))+2/7*b*(d*sec(
f*x+e))^(7/2)/f

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.20 \[ \int (d \sec (e+f x))^{7/2} (a+b \tan (e+f x)) \, dx=\frac {-21 i \, \sqrt {2} a d^{\frac {7}{2}} \cos \left (f x + e\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 21 i \, \sqrt {2} a d^{\frac {7}{2}} \cos \left (f x + e\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right ) + 2 \, {\left (5 \, b d^{3} + 7 \, {\left (3 \, a d^{3} \cos \left (f x + e\right )^{3} + a d^{3} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt {\frac {d}{\cos \left (f x + e\right )}}}{35 \, f \cos \left (f x + e\right )^{3}} \]

[In]

integrate((d*sec(f*x+e))^(7/2)*(a+b*tan(f*x+e)),x, algorithm="fricas")

[Out]

1/35*(-21*I*sqrt(2)*a*d^(7/2)*cos(f*x + e)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) +
I*sin(f*x + e))) + 21*I*sqrt(2)*a*d^(7/2)*cos(f*x + e)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos
(f*x + e) - I*sin(f*x + e))) + 2*(5*b*d^3 + 7*(3*a*d^3*cos(f*x + e)^3 + a*d^3*cos(f*x + e))*sin(f*x + e))*sqrt
(d/cos(f*x + e)))/(f*cos(f*x + e)^3)

Sympy [F(-1)]

Timed out. \[ \int (d \sec (e+f x))^{7/2} (a+b \tan (e+f x)) \, dx=\text {Timed out} \]

[In]

integrate((d*sec(f*x+e))**(7/2)*(a+b*tan(f*x+e)),x)

[Out]

Timed out

Maxima [F]

\[ \int (d \sec (e+f x))^{7/2} (a+b \tan (e+f x)) \, dx=\int { \left (d \sec \left (f x + e\right )\right )^{\frac {7}{2}} {\left (b \tan \left (f x + e\right ) + a\right )} \,d x } \]

[In]

integrate((d*sec(f*x+e))^(7/2)*(a+b*tan(f*x+e)),x, algorithm="maxima")

[Out]

integrate((d*sec(f*x + e))^(7/2)*(b*tan(f*x + e) + a), x)

Giac [F]

\[ \int (d \sec (e+f x))^{7/2} (a+b \tan (e+f x)) \, dx=\int { \left (d \sec \left (f x + e\right )\right )^{\frac {7}{2}} {\left (b \tan \left (f x + e\right ) + a\right )} \,d x } \]

[In]

integrate((d*sec(f*x+e))^(7/2)*(a+b*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate((d*sec(f*x + e))^(7/2)*(b*tan(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int (d \sec (e+f x))^{7/2} (a+b \tan (e+f x)) \, dx=\int {\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{7/2}\,\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right ) \,d x \]

[In]

int((d/cos(e + f*x))^(7/2)*(a + b*tan(e + f*x)),x)

[Out]

int((d/cos(e + f*x))^(7/2)*(a + b*tan(e + f*x)), x)